

Implementing VIPER on Remedial Sites

Informational briefing for Jim Woolford on the capabilities of ERT's VIPER system

Joe Schaefer 609-865-8111

Schaefer.joe@epa.gov

Sensor Data Issues for Superfund

- Volume of data
- Real-time doesn't always mean "real-time"
 - Data from PRP operated sensors is delivered to EPA using the same report based approach delays delivery
- Raw data doesn't correspond to our health benchmarks
 - Instantaneous readings versus Exposure-based action levels
- Time required to acquire, store, transform and reformat for dissemination
 - Increases contractor cost
 - Delay in releasing screening data erodes public confidence and creates sense that EPA is hiding information

VIPER

- System was built to handle the unique volume and real time utilization requirements inherent to sensors
- Based on federal data standards
- Adding new types of sensors requires no core system modifications
- Secure live view of the data via the web
- System monitors the data and determines exceedances, sending out notifications in real-time

Workflow

Web view

R02 American Cyanamid Site Deployment [Edit]

All Times Eastern, DST Observed

Start: 1/23/2014

End:

Description:

AreaRAE(s):

~	Instrument ID	Connection	Location	VOC	VOC 15-Min TWA	Received
0	(.109) AreaRAE * EPA Location 3 PRP Location I2	⊖ ок	40.5552210, -74.5506540	0.0 ppm	0.000000 ppm	3/19/2014 2:59 PM
0	(.115) AreaRAE * EPA Location 4 PRP Location I3	● ок	40.5554270, -74.5459520	0.3 ppm	0.201444 ppm	3/19/2014 2:59 PM
0	(.28) AreaRAE * EPA Location 6 Behind Ballpark	() ОК	40.5591460, -74.5535940	0.0 ppm	0.000000 ppm	3/19/2014 2:59 PM
0	(.42) AreaRAE * EPA Location 5 PRP Location I1	⊖ ок	40.5537540, -74.5540280	0.0 ppm	0.000000 ppm	3/19/2014 2:59 PM
0	(.76) AreaRAE * EPA Location 2 Pumping Station	⊝ ок	40.5509280, -74.5471480	0.0 ppm	0.000000 ppm	3/19/2014 2:59 PM
0	(.97) AreaRAE * EPA Location 1 Residential	⊖ ок	40.5543300, -74.5422390	0.0 ppm	0.000000 ppm	3/19/2014 2:59 PM

Benefit: Data Storage

- All sensor data for a site, no matter the size can be sorted in VIPER meaning nothing is lost to reduction or inability to access a data logger
- Once instruments are connected, VIPER handles the acquisition and storage. No contractor LOE for managing the database.
- □ Complete datasets are immediately available for FOIA requests or any other records needs

Benefit: Real-Time Decision Making

- □ Collect real-time data and actually use it in real-time
- □ Common operating picture for sensor data means EPA and PRP don't have to co-locate and can better allocate resources
- The monitors in VIPER allow a project manager to evaluate the data in a way that matches their DQOs without the need for any data post-processing
 - If dust levels exceed X at the fenceline for a period of 10 minutes, notify the PRP to stop work
 - Notify the local fire chief immediately if there is break through detected in the exhaust stack

NPL Case Study: Standard Mine

- Rehabbing of abandoned addit
- VIPERized water quality meters (pH, conductivity, water level) were placed downstream of treatment cell
- Monitoring was 24/7 so if the cell had a breach overnight, the work crews would have been notified and mobilized to stabilize the situation
- Work was being done at 11K ft. so satellite dish was necessary for internet uplink

NPL Case Study: Libby, MT

- Repaving operation on the main road through downtown
- Particulate monitors were deployed on the sidewalks in front of the local business
- Notification of elevated readings sent to MTDOT, so they could adjust dust suppression controls
- Monitoring system helped assure public that EPA was taking the operation seriously and had a process in place to deal with any issues

Capability: Remote Sampling

- WiFi enabled switches
- Switches can trigger a pump for the collection of a sample
- Opportunity to automatically trigger samples based on readings recorded in VIPER
 - If the stack has a reading > X, start the collection of 24 hour samples at the fenceline
 - Allow collection of water samples post storm event without the need to arrange the logistics of a field mobilization and hope you catch the event in time

NPL Case Study: American Cyanamid

- □ Concern about impact to nearby receptors if there was an issue with the operation of the thermal oxidizer unit during the OU8 pilot study
- EPA pre-positioned summa canisters at the fenceline and in the community equipped with the remote activation switches
- ☐ If monitoring instruments show an exceedance, sample collection can be remotely triggered providing analytical data

Questions?

- www.epaosc.org/viper
- □ Joe Schaefer
 - **609-865-8111**
 - Schaefer.joe@epa.gov
- **□** ERT Software Support
 - **1**-800-999-6990
 - ertsupport@epa.gov